Facial parity edge colouring
نویسندگان
چکیده
The facial parity edge colouring of a connected bridgeless plane graph is such an edge colouring in which no two face-adjacent edges (consecutive edges of a facial walk of some face) receive the same colour, in addition, for each face α and each colour c, either no edge or an odd number of edges incident with α is coloured with c. From the Vizing’s theorem it follows that every 3-connected plane graph has a such colouring with at most ∆ + 1 colours, where ∆ is the size of the largest face. In this paper we prove that any connected bridgeless plane graph has a facial parity edge colouring with at most 92 colours.
منابع مشابه
Facial Parity 9-Edge-Coloring of Outerplane Graphs
A facial parity edge coloring of a 2-edge-connected plane graph is such an edge coloring in which no two face-adjacent edges (consecutive edges of a facial walk of some face) receive the same color, in addition, for each face f and each color c, either no edge or an odd number of edges incident with f is colored with c. It is known that any 2-edgeconnected plane graph has a facial parity edge c...
متن کاملFacial non-repetitive edge-coloring of plane graphs
A sequence r1, r2, . . . , r2n such that ri = rn+i for all 1 ≤ i ≤ n, is called a repetition. A sequence S is called non-repetitive if no block (i.e. subsequence of consecutive terms of S) is a repetition. Let G be a graph whose edges are coloured. A trail is called non-repetitive if the sequence of colours of its edges is non-repetitive. If G is a plane graph, a facial non-repetitive edge-colo...
متن کاملDecompositions of plane graphs under parity constrains given by faces
An edge coloring of a plane graph G is facially proper if no two faceadjacent edges of G receive the same color. A facial (facially proper) parity edge coloring of a plane graph G is an (facially proper) edge coloring with the property that, for each color c and each face f of G, either an odd number of edges incident with f is colored with c, or color c does not occur on the edges of f . In th...
متن کاملOn the Strong Parity Chromatic Number
A vertex colouring of a 2-connected plane graph G is a strong parity vertex colouring if for every face f and each colour c, the number of vertices incident with f coloured by c is either zero or odd. Czap et al. in [9] proved that every 2-connected plane graph has a proper strong parity vertex colouring with at most 118 colours. In this paper we improve this upper bound for some classes of pla...
متن کاملThe neighbour-sum-distinguishing edge-colouring game
Let γ : E(G) −→ N∗ be an edge colouring of a graph G and σγ : V (G) −→ N∗ the vertex colouring given by σγ(v) = ∑ e3v γ(e) for every v ∈ V (G). A neighbour-sumdistinguishing edge-colouring of G is an edge colouring γ such that for every edge uv in G, σγ(u) 6= σγ(v). The study of neighbour-sum-distinguishing edge-colouring of graphs was initiated by Karoński, Łuczak and Thomason [8]. They conjec...
متن کامل